Package: did2s (via r-universe)

October 31, 2024

Title Two-Stage Difference-in-Differences Following Gardner (2021)

Version 1.1.0

Description Estimates Two-way Fixed Effects

difference-in-differences/event-study models using the approach proposed by Gardner (2021) <doi:10.48550/arXiv.2207.05943>. To avoid the problems caused by OLS estimation of the Two-way Fixed Effects model, this function first estimates the fixed effects and covariates using untreated observations and then in a second stage, estimates the treatment effects.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Depends R (>= 2.10), fixest (>= 0.10.1)

Imports data.table, Matrix, stats, boot, broom, ggplot2, rlang, did, staggered, didimputation, dreamerr

URL https://kylebutts.github.io/did2s/

Suggests rmarkdown, knitr, haven, testthat (>= 3.0.0), HonestDiD

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://kylebutts.r-universe.dev

RemoteUrl https://github.com/kylebutts/did2s

RemoteRef HEAD

RemoteSha 078f717c7e29ab5ce968cdff7c6bb55f8705ae9d

Contents

castle	 			•													•						2	,
df_het	 		•	•										•	•	•	•			•	•		2	

df_het

df_hom	3
did2s	4
event_study	8
gen_data	9
get_honestdid_obj_did2s	10
honest_did_did2s	11
sparse_model_matrix	13
	15
	12

Index

castle

Data from Cheng and Hoekstra (2013)

Description

State-wide panel data from 2000-2010 that has information on castle-doctrine, the so-called "stand-your-ground" laws that were implemented by 20 states.

Usage

castle

Format

A data frame with 550 rows and 5 variables:

sid state id, unit of observation

year time in panel data

l_homicide log of the number of homicides per capita

effyear year that castle doctrine is passed

post 0/1 variable for when castle doctrine is active

time_til time relative to castle doctrine being passed into law

df_het

Simulated data with two treatment groups and heterogenous effects

Description

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 1, te3 = 0, te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)

Usage

df_het

df_hom

Format

A data frame with 31000 rows and 15 variables:

unit individual in panel data
year time in panel data
g the year that treatment starts
dep_var outcome variable
treat T/F variable for when treatment is on
rel_year year relative to treatment start. Inf = never treated.
rel_year_binned year relative to treatment start, but <=-6 and >=6 are binned.
unit_fe Unit FE
year_fe Year FE
error Random error component
te Static treatment effect = te
te_dynamic Dynamic treatmet effect = te_m
state State that unit is in
group String name for group

df_hom

Simulated data with two treatment groups and homogenous effects

Description

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 2, te3 = 0, te_m1 = 0, te_m2 = 0, te_m3 = 0)

Usage

df_hom

Format

A data frame with 31000 rows and 15 variables:

unit individual in panel data

year time in panel data

g the year that treatment starts

dep_var outcome variable

treat T/F variable for when treatment is on

rel_year year relative to treatment start. Inf = never treated.

rel_year_binned year relative to treatment start, but <=-6 and >=6 are binned.

unit_fe Unit FE
year_fe Year FE
error Random error component
te Static treatment effect = te
te_dynamic Dynamic treatmet effect = te_m
group String name for group
state State that unit is in
weight Weight from runif()

did2s	Calculate	two-stage	difference-in-differences	following	Gardner
	(2021)				

Description

Calculate two-stage difference-in-differences following Gardner (2021)

Usage

```
did2s(
    data,
    yname,
    first_stage,
    second_stage,
    treatment,
    cluster_var,
    weights = NULL,
    bootstrap = FALSE,
    n_bootstraps = 250,
    return_bootstrap = FALSE,
    verbose = TRUE
)
```

data	The dataframe containing all the variables
yname	Outcome variable
first_stage	Fixed effects and other covariates you want to residualize with in first stage. Formula following fixest::feols. Fixed effects specified after " ".
second_stage	Second stage, these should be the treatment indicator(s) (e.g. treatment variable or event-study leads/lags). Formula following fixest::feols. Use i() for factor variables, see fixest::i.
treatment	A variable that = 1 if treated, = 0 otherwise. The first stage will be estimated for treatment == 0. The second stage will be estimated for the <i>full sample</i> .

did2s

cluster_var	What variable to cluster standard errors. This can be IDs or a higher aggregate level (state for example)				
weights	Optional. Variable name for regression weights.				
bootstrap	Optional. Should standard errors be calculated using bootstrap? Default is FALSE.				
n_bootstraps	Optional. How many bootstraps to run. Default is 250.				
return_bootstrap					
	Optional. Logical. Will return each bootstrap second-stage estimate to allow for manual use, e.g. percentile standard errors and empirical confidence intervals.				
verbose	Optional. Logical. Should information about the two-stage procedure be printed back to the user? Default is TRUE.				

Value

fixest object with adjusted standard errors (either by formula or by bootstrap). All the methods from fixest package will work, including fixest::esttable and fixest::coefplot

Examples

Load example dataset which has two treatment groups and homogeneous treatment effects

Load Example Dataset
data("df_hom")

Static TWFE:

You can run a static TWFE fixed effect model for a simple treatment indicator

```
static <- did2s(df_hom,</pre>
   yname = "dep_var", treatment = "treat", cluster_var = "state",
   first_stage = ~ 0 | unit + year,
   second_stage = ~ i(treat, ref=FALSE))
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | unit + year`
#> - second stage formula `~ i(treat, ref = FALSE)`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
fixest::esttable(static)
#>
                             static
#> Dependent Var.:
                            dep_var
#>
#> treat = TRUE 2.005*** (0.0202)
#> _____
#> S.E. type
                             Custom
#> Observations
                            46,500
#> R2
                            0.47520
#> Adj. R2
                            0.47520
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Event Study:

Or you can use relative-treatment indicators to estimate an event study estimate

```
es <- did2s(df_hom,
    yname = "dep_var", treatment = "treat", cluster_var = "state",
    first_stage = ~ 0 | unit + year,
    second_stage = ~ i(rel_year, ref=c(-1, Inf)))
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | unit + year`
#> - second stage formula `~ i(rel_year, ref = c(-1, Inf))`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
fixest::esttable(es)
#>
                                  es
#> Dependent Var.:
                             dep_var
#>
\# rel_year = -20
                     0.0043 (0.0322)
\# rel_year = -19
                     0.0222 (0.0296)
\# rel_year = -18
                   -0.0358 (0.0308)
\# rel_year = -17
                     0.0043 (0.0337)
\# rel_year = -16
                    -0.0186 (0.0353)
\# rel_year = -15
                    -0.0045 (0.0346)
#> rel_year = -14
                    -0.0393 (0.0384)
\# rel_year = -13
                     0.0453 (0.0323)
\# rel_year = -12
                     0.0324 (0.0309)
\# rel_year = -11
                    -0.0245 (0.0349)
\# rel_year = -10
                    -0.0017 (0.0241)
\# rel_year = -9
                     0.0155 (0.0242)
\# rel_year = -8
                    -0.0073 (0.0210)
#> rel_year = -7
                  -0.0513* (0.0202)
#> rel_year = -6
                    0.0269 (0.0237)
\# rel_year = -5
                     0.0136 (0.0237)
\# rel_year = -4
                    0.0381. (0.0223)
\# rel_year = -3
                   -0.0228 (0.0284)
#> rel_year = -2
                    0.0041 (0.0228)
#> rel_year = 0
                   1.971*** (0.0470)
\# rel_year = 1
                   2.050*** (0.0466)
#> rel_year = 2
                   2.033*** (0.0441)
\# rel_year = 3
                   1.966*** (0.0400)
#> rel_year = 4
                  1.965*** (0.0430)
#> rel_year = 5
                  2.030*** (0.0456)
#> rel_year = 6
                   2.040*** (0.0447)
#> rel_year = 7
                   1.995 * * (0.0370)
#> rel_year = 8
                   2.019*** (0.0485)
\# rel_year = 9
                   1.955 * * (0.0468)
#> rel_year = 10
                  1.950*** (0.0455)
#> rel_year = 11
                   2.117*** (0.0664)
#> rel_year = 12
                  2.132*** (0.0741)
```

did2s

```
#> rel_year = 13 2.019*** (0.0640)
#> rel_year = 14 2.013*** (0.0522)
#> rel_year = 15 1.961*** (0.0605)
#> rel_year = 16   1.916*** (0.0584)
#> rel_year = 17   1.938*** (0.0607)
#> rel_year = 18 2.070*** (0.0666)
#> rel_year = 19 2.066*** (0.0609)
#> rel_year = 20 1.964*** (0.0612)
#> ____
#> S.E. type
                             Custom
#> Observations
                             46,500
#> R2
                            0.47577
#> Adj. R2
                            0.47533
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# plot rel_year coefficients and standard errors
fixest::coefplot(es, keep = "rel_year::(.*)")
```

Example from Cheng and Hoekstra (2013):

Here's an example using data from Cheng and Hoekstra (2013)

```
# Castle Data
castle <- haven::read_dta("https://github.com/scunning1975/mixtape/raw/master/castle.dta")</pre>
```

```
did2s(
 data = castle,
 yname = "l_homicide",
 first_stage = ~ 0 | sid + year,
 second_stage = ~ i(post, ref=0),
 treatment = "post",
cluster_var = "state", weights = "popwt"
)
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | sid + year`
#> - second stage formula `~ i(post, ref = 0)`
#> - The indicator variable that denotes when treatment is on is `post`
#> - Standard errors will be clustered by `state`
#> OLS estimation, Dep. Var.: 1_homicide
#> Observations: 550
#> Weights: weights_vector
#> Standard-errors: Custom
#>
           Estimate Std. Error t value Pr(>|t|)
#> post::1 0.075142 0.03538 2.12387 0.034127 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 263.4 Adj. R2: 0.052465
```

event_study

Description

Uses the estimation procedures recommended from Borusyak, Jaravel, Spiess (2021); Callaway and Sant'Anna (2020); Gardner (2021); Roth and Sant'Anna (2021); Sun and Abraham (2020)

Usage

```
event_study(
   data,
   yname,
   idname,
   gname,
   tname,
   xformla = NULL,
   weights = NULL,
   estimator = c("all", "TWFE", "did2s", "did", "impute", "sunab", "staggered")
)
```

plot_event_study(out, separate = TRUE, horizon = NULL)

data	The dataframe containing all the variables
yname	Variable name for outcome variable
idname	Variable name for unique unit id
gname	Variable name for unit-specific date of initial treatment (never-treated should be zero or NA)
tname	Variable name for calendar period
xformla	A formula for the covariates to include in the model. It should be of the form \sim X1 + X2. Default is NULL.
weights	Variable name for estimation weights. This is used in estimating $Y(0)$ and also augments treatment effect weights
estimator	Estimator you would like to use. Use "all" to estimate all. Otherwise see table to know advantages and requirements for each of these.
out	Output from event_study()
separate	Logical. Should the estimators be on separate plots? Default is TRUE.
horizon	Numeric. Vector of length 2. First element is min and second element is max of event_time to plot

gen_data

Value

event_study returns a data.frame of point estimates for each estimator
plot_event_study returns a ggplot object that can be fully customized

Examples

```
out = event_study(
   data = did2s::df_het, yname = "dep_var", idname = "unit",
   tname = "year", gname = "g", estimator = "all"
)
plot_event_study(out)
```

Generate TWFE data

gen_data

Description

Generate TWFE data

Usage

```
gen_data(
  g1 = 2000,
  g2 = 2010,
  g3 = 0,
  panel = c(1990, 2020),
  te1 = 2,
  te2 = 2,
  te3 = 2,
  te_m1 = 0,
  te_m2 = 0,
  te_m3 = 0,
  n = 1500
)
```

g1	treatment date for group 1. For no treatment, set $g = 0$.
g2	treatment date for group 2. For no treatment, set $g = 0$.
g3	treatment date for group 3. For no treatment, set $g = 0$.
panel	numeric vector of size 2, start and end years for panel
te1	treatment effect for group 1. Will ignore for that group if $g = 0$.
te2	treatment effect for group 1. Will ignore for that group if $g = 0$.
te3	treatment effect for group 1. Will ignore for that group if $g = 0$.

te_m1	treatment effect slope per year
te_m2	treatment effect slope per year
te_m3	treatment effect slope per year
n	number of individuals in sample

Value

Dataframe of generated data

Examples

```
# Homogeneous treatment effect
df_hom <- gen_data(panel = c(1990, 2020),
    g1 = 2000, g2 = 2010, g3 = 0,
    te1 = 2, te2 = 2, te3 = 0,
    te_m1 = 0, te_m2 = 0, te_m3 = 0)
# Heterogeneous treatment effect
df_het <- gen_data(panel = c(1990, 2020),
    g1 = 2000, g2 = 2010, g3 = 0,
    te1 = 2, te2 = 1, te3 = 0,
    te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)
```

get_honestdid_obj_did2s

get_honestdid_obj_did2s

Description

a helper function that takes a fixest feols object (likely from did2s) that plugs into honest_did. Note this function assumes the event study coefficients are using i() syntax, e.g. i(rel_year). This should also work for a TWFE event-study model estimated by feols.

Usage

```
get_honestdid_obj_did2s(est, coef_name = "rel_year")
```

Arguments

est	A fixest object, likely from did2s.
coef_name	Character. The name of the event-study relative-year variable name, from i(rel_year).

Value

A list containing the vector of event-study coefficients beta, the variance-covariance matrix of beta, V, and a vector of relative years, event_time.

Description

a function to compute a sensitivity analysis using the approach of Rambachan and Roth (2021) when the event study is estimated using the did2s package. Note that you should first use the helper function get_honestdid_obj_did2s to create the object, obj, that you will then pass into this function with honest_did(obj)

Usage

```
honest_did_did2s(
  es,
  e = 0,
  type = c("smoothness", "relative_magnitude"),
 method = NULL,
 bound = "deviation from parallel trends",
 Mvec = NULL,
 Mbarvec = NULL,
 monotonicityDirection = NULL,
  biasDirection = NULL,
  alpha = 0.05,
  parallel = FALSE,
  gridPoints = 10<sup>3</sup>,
  grid.ub = NA,
  grid.1b = NA,
  . . .
)
```

es	an object of class honestdid_obj_did2s from the function get_honestdid_obj_did2s
е	event time to compute the sensitivity analysis for. The default value is e=0 corresponding to the "on impact" effect of participating in the treatment.
type	Options are "smoothness" (which conducts a sensitivity analysis allowing for vi- olations of linear trends in pre-treatment periods) or "relative_magnitude" (which conducts a sensitivity analysis based on the relative magnitudes of deviations from parallel trends in pre-treatment periods).
method	String that specifies the choice of method for constructing robust confidence in- tervals. This must be one of "FLCI", "Conditional", "C-F" (conditional FLCI hy- brid), or "C-LF" (conditional least-favorable hybrid). Default equals NULL and the function automatically sets method based on the recommendations in Ram- bachan & Roth (2021) depending on the choice of Delta. If Delta = DeltaSD, default selects the FLCI. If Delta = DeltaSDB or DeltaSDM, default delects the conditional FLCI hybrid.

bound	String that specifies the base choice of Delta (to which additional sign and shape restrictions will be incorporated if specified by the user). This must be either "deviation from parallel trends" or "deviation from linear trend". If bound equals "deviation from parallel trends", then the function will select Delta^RM(Mbar) as the base choice of Delta. If bound equals "deviation from linear trends", then the function will select Delta^SDRM as the base choice of Delta. By default, this is set to "deviation from parallel trends". See Section 2.3.1 and 2.3.2 of Rambachan & Roth (2021) for a discussion of these choices of Delta.
Mvec	Vector of M values for which the user wishes to construct robust confidence intervals. If NULL, the function constructs a grid of length 10 that starts at M = 0 and ends at M equal to the upper bound constructed from the pre-periods using the function DeltaSD_upperBound_Mpre if number of pre-periods > 1 or the standard deviation of the first pre-period coefficient if number of pre-periods = 1. Default equals null.
Mbarvec	Vector of Mbar values for which the user wishes to construct robust confidence intervals. If NULL, the function constructs a grid of length 10 that starts at Mbar $= 0$ and ends at Mbar $= 2$. Default equals null.
monotonicityDi	
	This must be specified if the user wishes to add an additional monotonicity re- striction to Delta^SD(M). If "increasing", underlying trend specified to be in- creasing, delta_t >= delta_t-1. If "decreasing", underlying trend specified to be decreasing delta_t <= delta_t-1. Default equals NULL
biasDirection	This must be specified if the user wishes to add an additional bias restriction to Delta $SD(M)$. If "positive", bias is restricted to be positive, delta >= 0. If "negative", bias is restricted to be negative, delta <= 0. Default equals NULL.
alpha	Desired size of the robust confidence sets. Default equals 0.05 (corresponding to 95% confidence interval)
parallel	Logical to indicate whether the user would like to construct the robust confi- dence intervals in parallel. This uses the Foreach package and doParallel pack- age. Default equals FALSE.
gridPoints	Number of grid points used for the underlying test inversion. Default equals 1000. User may wish to change the number of grid points for computational reasons.
grid.ub	Upper bound of grid used for underlying test inversion. Default sets grid.ub to be equal to twenty times the standard deviation of the estimated target parameter, l_vec * betahat. User may wish to change the upper bound of the grid to suit their application.
grid.lb	Lower bound of grid used for underlying test inversion. Default sets grid.lb to be equal to negative twenty times the standard deviation of the estimated target parameter, l_vec * betahat. User may wish to change the lower bound of the grid to suit their application.
	Ignored.

sparse_model_matrix Design matrix of a fixest object returned in sparse format

Description

This function creates the left-hand-side or the right-hand-side(s) of a femlm, feols or feglm estimation. Note that this function currently does not accept a formula

Usage

```
sparse_model_matrix(
   object,
   data,
   type = "rhs",
   na.rm = TRUE,
   collin.rm = TRUE,
   combine = TRUE,
   ...
)
```

Arguments

object	A fixest estimation object
data	If missing (default) then the original data is obtained by evaluating the call. Otherwise, it should be a data.frame.
type	Character vector or one sided formula, default is "rhs". Contains the type of matrix/data.frame to be returned. Possible values are: "lhs", "rhs", "fixef", "iv.rhs1" (1st stage RHS), "iv.rhs2" (2nd stage RHS), "iv.endo" (endogenous vars.), "iv.exo" (exogenous vars), "iv.inst" (instruments).
na.rm	Default is TRUE. Should observations with NAs be removed from the matrix?
collin.rm	Logical scalar, default is TRUE. Whether to remove variables that were found to be collinear during the estimation. Beware: it does not perform a collinearity check.
combine	Logical scalar, default is TRUE. Whether to combine each resulting sparse matrix
	Not currently used.

Value

It returns either a single sparse matrix a list of matrices, depending whether combine is TRUE or FALSE. The sparse matrix is of class dgCMatrix from the Matrix package.

Author(s)

Laurent Berge, Kyle Butts

See Also

See also the main estimation functions femlm, feols or feglm. formula.fixest, update.fixest, summary.fixest, vcov.fixest.

Examples

est = feols(wt ~ i(vs) + hp | cyl, mtcars)
sparse_model_matrix(est)

Index

* datasets castle, 2 $\texttt{df_het, 2}$ df_hom, 3 castle, 2 df_het, 2 df_hom, 3 did2s,4 event_study, 8 $event_study(), 8$ feglm, *13*, *14* femlm, *13*, *14* feols, *13*, *14* fixest::coefplot, 5 fixest::esttable, 5 fixest::feols,4 fixest::i,4 formula.fixest, 14 gen_data, 9 get_honestdid_obj_did2s, 10 honest_did_did2s, 11 plot_event_study (event_study), 8 sparse_model_matrix, 13 summary.fixest, 14 update.fixest, 14 vcov.fixest, 14